Truncation mutants of the tight junction protein ZO-1 disrupt corneal epithelial cell morphology.
نویسندگان
چکیده
The tight junction is the most apical intercellular junction of epithelial cells and regulates transepithelial permeability through the paracellular pathway. To examine possible functions for the tight junction-associated protein ZO-1, C-terminally truncated mutants and a deletion mutant of ZO-1 were epitope tagged and stably expressed in corneal epithelial cell lines. Only full-length ZO-1 and one N-terminal truncation mutant targeted to cell borders; other mutants showed variable cytoplasmic distributions. None of the mutants initially disrupted the localization of endogenous ZO-1. However, long-term stable expression of two of the N-terminal mutants resulted in a dramatic change in cell shape and patterns of gene expression. An elongated fibroblast-like shape replaced characteristic epithelial cobblestone morphology. In addition, vimentin and smooth muscle actin expression were up-regulated, although variable cytokeratin expression remained, suggesting a partial transformation to a mesenchymal cell type. Concomitant with the morphological change, the expression of the integral membrane tight junction protein occludin was significantly down-regulated. The localizations of endogenous ZO-1 and another family member, ZO-2, were disrupted. These findings suggest that ZO-1 may participate in regulation of cellular differentiation.
منابع مشابه
Expression of JAM-A in the human corneal endothelium and retinal pigment epithelium: localization and evidence for role in barrier function.
PURPOSE Junctional adhesion molecules (JAMs) are a family of adhesion proteins found in intercellular junctions. Evidence suggests that JAM-A is important for the regulation of tight junction assembly and epithelial barrier function. The authors recently reported that JAM-A is expressed in rabbit corneal endothelium and that antibody to JAM-A produces corneal swelling. In the present study, the...
متن کاملRestoration of tight junction structure and barrier function by down-regulation of the mitogen-activated protein kinase pathway in ras-transformed Madin-Darby canine kidney cells.
In the Madin-Darby canine kidney epithelial cell line, the proteins occludin and ZO-1 are structural components of the tight junctions that seal the paracellular spaces between the cells and contribute to the epithelial barrier function. In Ras-transformed Madin-Darby canine kidney cells, occludin, claudin-1, and ZO-1 were absent from cell-cell contacts but were present in the cytoplasm, and th...
متن کاملThe specific fates of tight junction proteins in apoptotic epithelial cells.
The polarized morphology of epithelial cells depends on the establishment and maintenance of characteristic intercellular junctions. The dramatic morphological changes observed in apoptotic epithelial cells were ascribed at least in part to the specific fragmentation of components of adherens junctions and desmosomes. Little, however, is known about tight junctions during apoptosis. We have fou...
متن کاملZonula occludens-1 function in the assembly of tight junctions in Madin-Darby canine kidney epithelial cells.
Zonula occludens (ZO)-1 was the first tight junction protein to be cloned and has been implicated as an important scaffold protein. It contains multiple domains that bind a diverse set of junction proteins. However, the molecular functions of ZO-1 and related proteins such as ZO-2 and ZO-3 have remained unclear. We now show that gene silencing of ZO-1 causes a delay of approximately 3 h in tigh...
متن کاملZO-1 function in the assembly of tight junctions in MDCK epithelial cells
Zonula occludens-1 (ZO-1) was the first tight junction protein to be cloned, and has been implicated as an important scaffold protein. It contains multiple domains that bind a diverse set of junction proteins. However, the molecular functions of ZO-1 and related proteins such as ZO-2 and ZO-3 have remained unclear. We now show that gene silencing of ZO-1 causes a delay of ~3 hours in tight junc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular biology of the cell
دوره 11 5 شماره
صفحات -
تاریخ انتشار 2000